

Monitoring the Cloud-IoT continuum for latency-Aware applications placement

Marco Gaglianese

Service-oriented, Cloud and Fog Computing Research Group

Department of Computer Science

University of Pisa, Italy

Fog computing (Cloud-IoT)

• Everything is a Fog node • Routers, Switches Internet /Cloud / Servers (Global) • Servers IoT devices Core Network / Routers (Regional) Deploy applications fog fog meeting the requirements Access / Edge Nodes (Neighborhood) fog fog fog Computation • Storage Gateway / CPE fog fog fog fog (Building / Street) Quality of Service fog fog fog fog Latency • Bandwidth TOV 8 Endpoints / Things

Fog Infrastructure Monitoring

- Fog orchestration
 - much work on Analyse
 - some work on Plan & Execute
 - less work on Monitor
 - Monitor pivotal to decide
 - 1. where to deploy app services at first
 - 2. when/where to migrate app services

FogMon 2

An Open source lightweight fault-resilient monitoring service for Cloud-IoT infrastructures

- The service monitors:
 - hardware resources availability
 - CPU, RAM, STORAGE
 - end-to-end network QoS
- Two types of distributed P2P agents:
 - Followers measure the monitored metrics, and
 - Leaders aggregate the metrics from a group of Followers, and gossip them to other Leaders

https://github.com/di-unipi-socc/FogMon/tree/liscio-2.0

di-unipi-socc/FogMon is licensed under the MIT License

A. Brogi, S. Forti, M. Gaglianese. Measuring the Fog, Gently. ICSOC 2019.

S. Forti, M. Gaglianese, A. Brogi. Lightweight self-organising distributed monitoring of Fog infrastructures. Future Generation Computer Systems. 2021.

Measuring Bandwidth Intra-groups:

- Intrusive measurements
 - Iperf3

- Passive techniques
 - Assolo

Inter-groups:

$$\beta_{A,B} \simeq \min_{k,h} \{\max\{\beta_{A,k}\}, \max\{\beta_{h,B}\}, \beta_{L1,L2}\}$$

FogMon restructuring mechanism

- Hybrid overlay network, with \sqrt{N} leaders
 - K-medoids with latency.

FogMon communications costs

• Leaders collect measurements from Followers in their groups.

- Leaders spread data to other Leaders via Gossiping
 - $O(\log L)$ rounds to spread information on avg
 - $O(L \log L)$ messages exchanged overall

FogMon Fault-tolerance and Scalability

Fault-tolerance

- Data replication at Leaders guarantees tolerance wrt some Leader failures.
- Followers rearrange into other groups when their Leader fails.
- Groups keep working in case of network interruption between Leaders.

Scalability

- N nodes, L leaders
- $\frac{N}{L}$ nodes per group (per Leader)
- $\frac{N^2}{L^2}$ e2e measurements for bw and latency

• If
$$L \simeq \sqrt{N}$$
 then $O\left(\frac{N^2}{\sqrt{N}^2}\right) = O(N)$
e2e measurements.

Recent experiments of FogMon

*LiSClo experiment - "Lightweight Self*adaptive <u>Cloud-IoT Monitoring across</u> Fed4FIRE+ Testbeds"

• Fed4FIRE+ federation provided the testbed infrastructure

M. Gaglianese, S. Forti, A. Brogi. Lightweight Self-adaptive Cloud-IoT Monitoring across Fed4FIRE+ Testbeds. At INFOCOM 2022. Workshop CNERT.

Experiment Setup and Plan

Measuring

footprint on hardware and bandwidth

• relative error on measurements & estimates against setup ground-truth (configured via GRE-tunnels and tc)

time to reach stability

on

- 3 types of Leader & Follower Failures (NF)
- 2 types of Link Failures (LF)
- 20 (S), 30 (M) and 40 (L) nodes across VIRTUALWALL and CityLab
- default vs reactive configurations

	VIRTUALWALL (physical nodes)	CityLab (wireless nodes)
S	10	10
М	15	15
L	30	10

Total 30 experiments

Experiment tooling

ġ	ဝ့် FogMonEye Index	Testbeds About Search	S	earch		8
pu	min cpu	peak mem	min mem	peak tx	min tx	peak
%	0.00%	39.77MB	9.59MB	9548.67KB/s	0.00KB/s	8781
%	0.00%	37.90MB	4.55MB	8654.72KB/s	0.00KB/s	8316
		enode15 enode18 enode3 enode2 node2 node8		node26@ node13 onde12 node5 onde18 node22		

- Topology builder creates all N² end-to-end connections between all nodes across testbeds via tc and GRE-tunnels
- Mimicks a **hierarchical Cloud-IoT network** with Edge (at CityLab), transport (at both testbeds) and Cloud (at VIRTUALWALL) nodes, with lifelike latencies and bandwidths

Results

- Reactive vs Default:
 - Reactive faster in identifying changes but more resource intensive
- Link Failures (LF) vs Node Failures (NF):
 - Faster to react to Link Failures
 - **Relative errors** are comparable
- Size:
 - slight increase in **footprint** with the size
 - **Relative errors** are almost comparable

FogMon Footprint

CPU usage

Bandwidth usage

Relative errors

Concluding remarks

Leveraging Fed4Fire+ facilities, we have shown that FogMon:

- can be deployed across network boundaries and heterogenous computing capabilities
- detects and adapts to nodes and link failures
- exhibits low acceptable footprint on nodes and links at increasing infrastructure sizes (from 20 to 40 nodes)

Evolved FogMon from TRL 4 (lab) to TRL 5 (relevant environment, 40 nodes)

M. Gaglianese, S. Forti, F. Buti, F. Paganelli, A. Brogi. Lightweight Self-adaptive Cloud-IoT Monitoring across Fed4FIRE+ Testbeds (LiSCIo) [Dataset]. Available on Zenodo: <u>http://doi.org/10.5281/zenodo.4682987</u> (2021)

Future work

experimental assessment

Thank you for your attention!

Marco Gaglianese marco.gaglianese@phd.unipi.it

Service-oriented, Cloud and Fog Computing Research Group Department of Computer Science University of Pisa, Italy

